ANEXO II: Protocolo Técnico sobre Gestión de Riesgo

AYUNTAMIENTO DE MALAGA

LA G	GESTION DEL RIESGO	3
1.	NTRODUCCION	3
2.	EL RIESGO ACTUAL DE LOS ÁRBOLES VIARIOS DE MALAGA	4
2.1.	El riesgo asociado al vuelco de los arboles o a fallos radiculares	4
2.2.	El riesgo asociado a la cafda por rotura del cuello	6
2.3.	El riesgo asociado a roturas de tronco principal	7
2.4.		
2.5.		
3.	METODOLOGÍA DE ESTUDIO DEL RIESGO	10
3.1.	Ejemplares susceptibles de presentar riesgo - ANALISIS VISUAL VTA:	
	Ejemplares susceptibles de presentar riesgo - ANALISIS INSTRUMENTAL:	
	Dinamica de Trabajo:	
	Analisis del riesgo por riesgo y urgencia de actuacion	
	Analisis del riesgo por defecto y dimension de la estructura afectada	
	Propuesta de planificación de los trabajos:	

LA GESTION DEL RIESGO.

1. INTRODUCCION

La gestion del riesgo tiene varios aspectos importantes, evidentemente el primero se refiere a la eliminacion del riesgo presente en la ciudad (asociado a los arboles), pero debe incluir tambien aquellas operaciones tipicas de un entorno urbano que aumentan el riesgo de caida o rotura de ejemplares. Algunos de estas operaciones solo pueden ser controladas a traves de un **Plan Director** y unas **Ordenanzas** que regulan el tratamiento que un arbol recibe por todos los protagonistas de una ciudad.

Asi, a parte de la primera fase de eliminacion del riesgo presente, entendemos que actuaciones del tipo:

- Podas drasticas de reduccion
- Creacion de zanjas para instalacion de servicios
- Ausencia de control sobre el cepellon de los arboles de vivero (para observar la posible presencia de raices estrangulantes)

Implican mantener una proporcion de riesgo intrmseca a la poblacion de arboles que tiene dos efectos muy perniciosos: por un lado el riesgo real de que la caida o rotura de un ejemplar genere un dano personal y material. Y por otro, generar un estereotipo de que los arboles son peligrosos y deben ser podados (mutilados) para que su estructura no se desarrolle.

Por tanto la gestion del riesgo, que tiene como objetivo prioritario la salvaguarda de los ciudadanos y sus bienes, obtiene un objetivo secundario que es la capacidad de sus gestores de decidir las actuaciones tecnicas mas adecuadas sin la presion ciudadana que pida la reduccion/mutilacion de sus estructuras. Este cambio de concepcion del arbolado requiere su tiempo, pero son necesarias para la implantacion de las políticas destinadas a generar una nueva tipologia de arboles en la ciudad.

Hay que tener en cuenta, por ultimo, que existe un cierto nivel de riesgo que no es eliminable. Para condiciones meteorologicas extremas, u otras causas excepcionales. Es estadisticamente posible que, aun llevando una correcta gestion de los arboles de una ciudad, se den algunas roturas / caidas.

2. EL RIESGO ACTUAL DE LOS ARBOLES VIARIOS DE MALAGA.

El presente documento analiza solo el riesgo actual de los arboles de Malaga, no incluye el resto de aspectos (contemplados en la introduccion) y que intervienen de manera muy importante en la gestion a futuro de los arboles y tambien del riesgo que pueden o no conllevar.

Los distintos tipos de riesgo que se han tenido en cuenta estan agrupados en los siguientes puntos, se describen sus causas, las estrategias de correccion y la gestion que requieren para minimizarlos.

2.1. El riesgo asociado al vuelco de los arboles o a fallos radiculares

Este tipo de defectos **NO SON EVALUABLES VISUALMENTE a priori,** por tanto su consideracion partira de casos de caidas ocurridas, visualizaciones ocasionadas por obras o modificaciones, o a partir de datos historicos que el ayuntamiento pueda aportar y sean analizables.

El vuelco de los arboles es un tipo de caida asociado a distintos fenomenos:

a) Cambio de cota y posterior del pudricion del sistema radicular.

<u>Caractensticas del analisis</u>: la deteccion de los arboles no se puede hacer mediante el filtrado de datos obtenidos del inventario, ni mediante la evaluacion visual que un plan de gestion y riesgo global permite. Se debe incluir este campo a medida que distintos tipos de trabajo de campo den esa informacion.

<u>Tratamiento de los arboles</u>: recomendamos realizar una inspeccion radicular de alguno de los ejemplares, para verificar el posible deterioro

<u>Solucion general</u>: como solucion general (y para la mayona de especies) se recomienda la eliminacion de estos arboles en su totalidad.

<u>Planificacion</u>: La urgencia de las actuaciones dependera en primer grado de los defectos y riesgo encontrado. Y en segundo grado de la capacidad de realizar una substitucion masiva.

Especies que pueden ser especialmente sensibles a este aspecto de riesgo:

Especies muy sensibles	Especies moderadamente sensibles	Especies menos expuestas
Sophora japonica	Celtis australis	Platanus x acerifolia
Melia adzedarach	Tipuana tipu	Ulmus pumila
Lagunaria patersonii	Jacaranda mimosifolia	Phoenix dactylifera
Acer negundo	Brachychiton populneum	Schinus molle
Pinus halepensis	Brachychiton acerfolium	Ficus sp
Robinia pseudoacacia Ailanthus altissima	Populus alba Sterculia platanifolia	
Catalpa bignonioides	Stercuna piatariiona	

b) Raices estrangulantes: este factor se genera en vivero y aunque cualquier especie es susceptible de estar producida con este error de produccion. Son mas habituales aquellas especies que no requieren una gran preparacion por parte del viverista. Las especies que presentan de manera mas habitual este defecto son:

Pinus halepensis	Pinus pinea	Melia adzedarach
Cupressus sp.	Chamaecyparis sp	Celtis australis

<u>Caractensticas del analisis</u>: la detección de los arboles no se puede hacer mediante el filtrado de datos obtenidos del inventario ni mediante la valoración visual general realizada. Se debe incluir este campo a medida que distintos tipos de trabajo de campo den esa información. O a traves de la información generada por caidas de arboles de estos grupos.

<u>Tratamiento de los arboles</u>: recomendamos realizar una inspeccion radicular de alguno de los ejemplares, para verificar el grado de riesgo generado por la estrangulacion.

Solucion general: se recomienda la eliminacion de estos arboles en su totalidad.

<u>Planificacion</u>: La urgencia de las actuaciones dependera en primer grado de los defectos y riesgo encontrado. Y en segundo grado de la capacidad de realizar una substitucion masiva.

c) Desarraigo asociado a cortes de raices: Todas las especies son susceptibles de sufrir danos y de generar riesgo en funcion de la gravedad del dano sufrido.

<u>Caractensticas del analisis</u>: la deteccion de los arboles no se puede hacer mediante el filtrado de datos obtenidos del inventario ni mediante la valoracion visual. Se debe incluir este campo a medida que distintos tipos de trabajo de campo den esa informacion. O traves de la informacion generada por caidas de arboles de estos grupos. O a traves de datos que el ayuntamiento pueda suministrar de fotograffas de trabajos de realizacion de zanjas de servicios, etc., existe una pequena capacidad de correlacion asociada a perdidas graves de vitalidad, pero esta solo puede darse si se tiene de antemano la informacion de que se hayan realizado danos por obras.

<u>Tratamiento de los arboles</u>: recomendamos realizar una inspeccion radicular de alguno de los ejemplares, para verificar el grado de riesgo generado por la estrangulacion.

<u>Solucion general</u>: las recomendaciones se haran de manera individualizada (por poblacion) en funcion del dano causado y el riesgo generado actual y futuro.

<u>Planificacion</u>: La urgencia de las actuaciones dependera en primer grado de los defectos y riesgo encontrado. Y en segundo grado de la capacidad de realizar una substitucion masiva.

2.2. El riesgo asociado a la ca^da por rotura del cuello

La rotura del cuello es una rotura asociada normalmente a la pudricion de esta zona y suele estar asociada a la presencia de hongos xilofagos. Este tipo de roturas son detectables mayoritariamente mediante una evaluacion visual. Esta evaluacion visual se basa, principalmente, en la observacion de las siguientes variables.

- Deformaciones de la zona del cuello
- Presencia de defectos visibles (cavidades, supuraciones, heridas, etc.)
- Presencia de cuerpos fructfferos

<u>Caractensticas del analisis</u>: la deteccion de los arboles se realiza mediante un filtrado teorico que incluye datos relacionados con las dimensiones de los arboles y su especie. Ademas, se basa en el analisis visual realizado en calle sobre las distintas poblaciones.

<u>Tratamiento de los arboles</u>: se debe realizar una inspeccion visual individual y (si es necesaria) una inspeccion instrumental.

<u>Solucion general</u>: las recomendaciones se haran de manera individualizada (por ejemplar) en funcion del dano encontrado y el riesgo actual y futuro.

Planificacion: La urgencia de las actuaciones dependera de los defectos y riesgo encontrado.

Todas las especies son susceptibles de tener defectos internos a este nivel y de presentar hongos acompanantes que aceleren el deterioro de la madera, sin embargo de los arboles de Palma de Mallorca, las especies con un mayor porcentaje de defectos son:

Celtis australis	Platanus x acerifolia	Populus alba
Populus nigra	Populus x canadiensis	Melia adzedarach
Sophora japonica	Acernegundo	Ailanthus altissima

- a) Pudriciones de Inonotus rickii
- b) Pudriciones de Ganoderma
- c) Pudriciones sin fructificacion

a) Inonotus rickii:

Este hongo cumple todos los requisitos para convertirse en una dolencia importante en gravedad y en cantidad (en todas las ciudades de clima mediterraneo). Es un hongo que tiene dos tipos de afectacion, puede actuar de manera xilofaga o acceder al arbol corticalmente, la xilofaga es la manera mas habitual de encontrarlo en las ciudades. No es un hongo espedífico del cuello, ya que puede estar en toda la parte aerea lenosa. Es un hongo poKfago de gravedad solo conocida en algunas especies (ya que es de reciente introduccion y no hay mucha information al respecto).

Lo consideramos como grave en las siguientes especies:

Especie	Posicion habitual	Comportamiento	Gravedad
Celtis australis	Tronco, ejes, ramas	Xilofago / cortical	Alta
Acernegundo	Brazos de copa en vaso, ejes	Xilofago / (cortical)	Moderada-alta
Schinus molle	Tronco y ramas	Xilofago	Alta

b) Pudriciones de Ganoderma sp.

El segundo hongo en orden de importancia es *Ganoderma* sp., tiene efectos bastante importantes en los arboles en los que esta presente, una de sus consecuencias es el aumento del riesgo de caida de todo el ejemplar.

c) Pudriciones sin fructificacion.

I. rickii es una excepcion (junto con otras especies del mismo genero, por ejemplo *I. tamaricis* en el tamarindo) ya que convive con mucha facilidad con las limitaciones del entorno urbano, muchos otros hongos, sin embargo, se dan mal en las condiciones que tienen los arboles viarios. Es por eso que la cantidad de cuerpos fructfferos es reducida. Este factor hace que la velocidad de pudricion de los arboles sea algo menor, ya que para la mayona de especies de hongo el cuerpo fructffero colabora en generar las condiciones optimas para su desarrollo.

2.3. El riesgo asociado a roturas de tronco principal

Este tipo de roturas son, mayoritariamente, evaluables visualmente de manera previa. Suele mostrarse a traves de smtomas visuales (deformaciones, madera de reaccion, necrosis cortical y fructificaciones de hongos). Las roturas de tronco suele estar debido a dos factores fundamentales:

- Defectos internos asociados a pudriciones
- Defectos estructurales combinados (o no) a defectos internos

<u>Caractensticas del analisis</u>: la detección de los arboles se realiza mediante un filtrado teorico que incluye datos relacionados con las dimensiones de los arboles y su especie. Ademas, se basa en el analisis visual realizado en calle sobre las distintas poblaciones. Puede tener cierta relacion con deficiencias de vitalidad.

<u>Tratamiento de los arboles</u>: se debe realizar una inspeccion visual individual y (si es necesaria) una inspeccion instrumental.

Solucion general: las recomendaciones se haran de manera individualizada (por ejemplar) en funcion del dano encontrado y el riesgo actual y futuro.

Planificacion: La urgencia de las actuaciones dependera de los defectos y riesgo encontrado.

No todas las especies presentan roturas de este tipo. Aunque todas son susceptibles de presentarlas, las especies que mas arboles defectuosos presentan a este nivel son:

Populus alba	Populus x canadiensis	Populus nigra
Melia adzedarach	Sophora japonica	Fraxinus angustifolia
Acernegundo	Catalpa bignonoides	Schinus molle
Robinia pseudoacacia	Ailanthus altissima	

2.4. El riesgo asociado a la rotura de ejes principales

Este tipo de defectos son detectables mediante un analisis visual de los arboles. Las principales causas de las roturas a este nivel son:

- Roturas debido a codominancias
- Roturas debidas al mal estado de la base de los ejes (mayoritariamente asociado al exceso de podas drasticas).
- Roturas debidas a defectos estructurales (asociados o no a podas drasticas).

<u>Caractensticas del analisis</u>: la detección de los arboles se realiza mediante un filtrado teorico que incluye datos relacionados con las dimensiones de los arboles, su estructura basica y la especie. Ademas, se basa en el analisis visual realizado en calle sobre las distintas poblaciones.

<u>Tratamiento de los arboles</u>: se debe realizar una inspeccion visual individual y (solo en casos de ejes de grandes dimensiones) una inspeccion instrumental.

<u>Solucion general</u>: las recomendaciones se haran de manera individualizada (por ejemplar) en funcion del dano encontrado y el riesgo actual y futuro.

Planificacion: La urgencia de las actuaciones dependera de los defectos y riesgo encontrado.

En la mayona de poblaciones / ejemplares que presentan riesgo en este punto hay una asociacion con el xilofago *I. hispidus*.

a) Pudriciones de Inonotus hispidus

Igual que *I. rickii, I. hispidus* es un hongo muy poKfago y que produce especialmente roturas en ramas, excepcionalmente esta relacionada con roturas de tronco, pero es especialmente grave en los ejes que han sido objeto de podas drasticas de manera periodica. Tambien esta presente en ramas de diametro superior a 20 cm.

Las especies que mas afectadas por *I. hispidus* son:

Melia adzedarach	Sophora japonica	Fraxinus angustifolia
Morus sp.	Populus nigra	Populus x canadiensis

b) Pudriciones sin fructificacion

2.5. El riesgo asociado a la rotura de ramas.

El riesgo de rotura de ramas es el mas habitual. Los smtomas suelen estar mas asociados a una poblacion en general que a un ejemplar en concreto. La mayona de defectos estan asociados a:

- Roturas de rama debido a defectos generados por podas
- Roturas de rama debido a defectos estructurales
- Roturas de rama por codominancia

Debido a la abundancia de defectos que puede haber en una poblacion concreta se podran dictaminar propuestas de actuacion que se refieran a trabajos a realizar <u>de manera general en la poblacion</u>. En el caso de arboles puntuales o en casos de arboles de interes local o singulares, se podra concretar individualmente el tipo de solucion que sea pertinente.

<u>Caractensticas del analisis</u>: la deteccion de los arboles se realiza mediante un filtrado teorico que incluye datos relacionados con las dimensiones de los arboles, su estructura basica y la especie. Ademas, se basa en el analisis visual realizado en calle sobre las distintas poblaciones.

<u>Tratamiento de los arboles</u>: se debe realizar una inspeccion visual de la poblacion y (solo en algunos casos se individualiza el estudio)

<u>Solucion general</u>: las recomendaciones se haran a nivel poblacional. En algunos casos de urgencia elevada se puede individualizar algun tratamiento.

<u>Planificacion</u>: La urgencia de las actuaciones dependera de los defectos y riesgo encontrado, pero en general este punto afecta poblaciones con defectos moderados que deben ser tratados de manera preventiva (y pocas veces de manera correctiva).

- a) Defectos y roturas generados por podas. Todas las especies (excepto platano) que han sufrido podas espaciadas pero periodicas de reduccion drastica poseen puntos potenciales de rotura en el punto del corte y de donde han brotado los nuevos brotes. Estos defectos son subsanables solo parcialmente en aquellas estructuras que permitan una reformacion, en muchos casos / especies esto no es posible y se recomienda su substitucion.
- b) Los defectos estructurales tienen relacion en parte con el tipo de poda realizada. El exceso de refaldado, la limpieza interior, etc., generan ramas (y arboles muy estilizados) con el centro de gravedad (respecto al viento) muy elevado y por tanto con riesgo de rotura. Estos defectos son subsanables mediante cambios en la estrategia de poda.
- c) Codominancias: Este es un defecto puntual (propio de ejemplares concretos). Es sin embargo, un defecto que puede aparecer en el futuro en nuevas plantaciones o en arboles en fase de adulto. La mayona deben ser solucionadas mediante poda. Y solo las mas graves (por afectar a estructuras de grandes dimensiones o estar muy avanzadas en su proceso) se debran recoger de manera individual.

3. METODOLOGÍA DE ESTUDIO DEL RIESGO.

Los ejemplares y poblaciones susceptibles de valoracion de riesgo se han clasificado en:

Analisis Visual: 1.362 uds.

Analisis Instrumental: 84 uds.

3.1. Ejemplares susceptibles de presentar riesgo - ANALISIS VISUAL VTA:

Etiquetas de fila Alameda de Barcelo	1
Platanus x hispanica Alameda de Principal	1 45
Ficus microcarpa Alcalde Nicolas Maroto	45 1
Pinus halepensis	1
Amador de los Rios	24
Ficus microcarpa	1
Fraxinus pennsylvanica Pinus halepensis	2 7
Robinia pseudoacada	14
Avenida de la Estacion (El palo - REVISAR)	28
Tipuana tipu Avenida de las Caballerizas	28 2
Populus nigra	2
Avenida de las Postas	14
Brachychiton populneus Avenida de los Rosales	14 18
Melia azedarach	18
Avenida de los Tilos	2
Pinus halepensis	2
Avenida del Pintor Joaquin Sorolla	2
Eucalyptus camaldulensis	2
Caballero de la Cruz	1
Robinia pseudoacada CAL-1036 • BENAGALBON	1 2
Populus nigra CAL-1056 • CORREGIDOR CARLOS GARAFA	2 2
Populus nigra CAL-117 • LA UNION	2 2
Tipuana tipu CAL-135 • HORACIO LENGO	2 29
Brachychiton populneus	29
CAL-185 • FERNANDEZ FERMINA	38
Platanus x hispanica	32
Populus nigra	6

Etiquetas de fila	Total
CAL-188 • VIRGEN DE LA FUENSANTA	13
Eleagnus angustrfo ia	2
Fraxinus excelsior	3
Ligustrum japonicum	1
Morus alba	3
Platanus x hispanica	2
Ulmus minor	2
CAL-189 - VIRGEN DE LA INMACULADA	8
Fraxinus excelsior	6
Me ia azedarach	2
CAL-197 • VIRGEN DE LA CA6EZA	7
Fraxinus excelsior	7
CAL-199 • VIRGEN DEL ROCIO	23
Fraxinus excelsior	23
CAL-201 • VIRGEN DE LA PALOMA	31
Fraxinus excelsior	31
CAL-202 • VIRGEN MARIA AUXILIADORA	4
Fraxinus excelsior	4
CAL-206 ■ VIRGEN DEL ROSARIO	12
Acer negundo	12
CAL-208 • VIRGEN DE LA CANDELARIA	14
Fraxinus excelsior	10
Ulmus pumila	4
CAL-209 • VIRGEN DEL AMPARO	4
Fraxinus excelsior	3
Ulmus pumila	1
CAL-264 • JORGE GUILLEN	51
Morus alba	30
Robinia pseudoacada	19
Tipuana tipu	2
CAL-274 ■ GOYA	15
Ulmus pumila	15
CAL-28 • HAMLET	18
Tipuana tipu	18
CAL-296 • VICENTE ALEIXANDRE	10
Morus alba	4
Robinia pseudoacada	6
CAL-310 ■ EUROPA	2
Casuarina equisetifolia	2
CAL-48 • PATO DEL	10
Pinus pinea	10
CAL-65 • CORREGIDOR NICOLAS ISIDRO	2

Populus nigra 2

Etiquetas de fila	Total
CAL-73 • JOSE PALANCA	so
Me la azedarach	so
Carril de las Acacias	3
Robinia pseudoacaaa	3
Compositor Lehmberg Ruiz	18
Populus alba Populus nigra	17 1
Explanada de la Estadon	6
Platanus x hispanica Robinia pseudoacaaa	2 4
Fernan Caballero	6
Platanus x hispanica Fernan Nunez	6 8
Acer negundo Fernandez Shaw	8 30
Melia azedarach	18
Robinia pseudoacaaa Ferrandiz	12 30
Eucalyptus camaldulensis Platanus x hispanica	18 10
Robinia pseudoacaaa Flernan Nunez de Toledo	2 1
Platanus x hispanica	1
INGENIERO JOSE MARIA GARNICA	1
Ficus microcarpa Juan Sebastian Elcano	1 9
Casuarina equisetifolia Platanus x hispanica	2 4
Populus nigra	3
Juarta Jugan	1
Araucaria heterophyila La minilla	1
Populus nigra	1
Limonar	169
Platanus x hispanica Marcos Zapata	169 54
Robinia pseudoacaaa Schinus mo) le	1 S3
Mariano de Cavia	20
Fraxinus pennsylvanica Melia azedarach	3 9
Robinia pseudoacaaa	8
Martinez Falero	1
Populus nigra MART1NICOS	1 129
Eucalyptus sp.	129

Etiquetas de fila	Total
Miramar	2
Eucalyptus camaldu ensis	1
Eucalyptus globulus Ficus	100
micro carp a Platanus x	30
hispanica Octawio Picon	38
Platanus x hispanica	24
Robinia pseudoacacia Pintor Martinez Cubelts	14 35
Acer negundo	3
Jacaranda mimostfolia	30
Robinia pseudoacacia	1
Schinus mode	1
Pio Baroja	2
Populus alba	2
Plaza de las 4 esquinas (Real-Dona de Tolosa)	10
Robinia pseudoacacia Plaza del Patrodnio	10 15
Ficus carica	2
Ficus elastica	1
Jacaranda mimosrfolia	4
Platanus x hispanica Robinia pseudoacacia	5 3
Plaza Triangular	21
Melia azedarach Robinia pseudoacacia	19 2
Republica Argentina	22 133
Ailanthus altissima	1
Eucalyptus camaldulensis	1
Grevillea robusta Platanus x	1
hispanica Robinia	17
pseudoacaria Ricardo Leon	1 35
Platanus x hispanica	29
Robinia pseudoacacia	6
Salvador Allende	6
Eucalyptus camaldulensis Populus alba	1 5
Salvador Rueda	20
Platanus x hispanica San Mateo	20
Robinia pseudoacacia	8
San Millan	7
Platanus x hispanica	7
Santiago Ramon y Cajal Eucalyptus camaldulensis	<u>1</u>
Ventura de La Vega	9
Platanus x hispanica	9
Villafuerte	1
Populus nigra	1
WILKINSON	27
Eucalyptus sp.	27
Total general	1362

3.2. Ejemplares susceptibles de presentar riesgo - ANALISIS INSTRUMENTAL:

Se han clasificado 2 poblaciones con un total de 84 ejemplares.

Etiquetas de fila	Total	
Alameda de Principal Ficus microcarpa	Total	4545
DONA CLARINES		39
Eucalyptus sp.		39
Total general 3.3. Dinamica de Trabajo:		84

Se realizara una ficha de inspeccion del riesgo en cada poblacion y ejemplar de arbolado, esta ficha se rellenaran en aquellos casos que presentaban la necesidad de la realizacion del VTA. Los campos analizados mediante la valoracion visual y las propuestas referidas al seguimiento de cada caso seran:

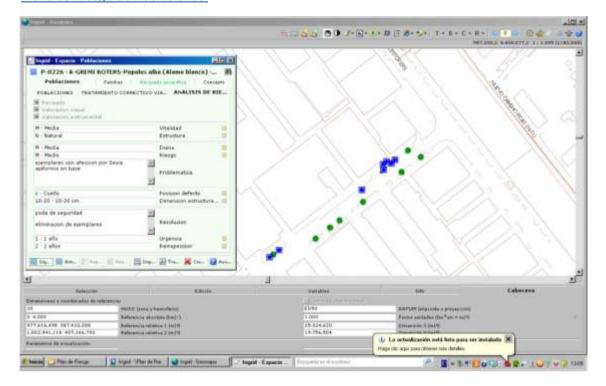
- a) Vitalidad: Indica la capacidad de adaptacion a los defectos.
- b) Estructura: Indica la estructura actual de la copa.
- c) Diana: Muy Alta Alta Media Baja.
- d) Riesgo: Alto Medio Bajo.
- e) Valoracion Instrumental: segun defecto, todas las valoraciones se Resistografo.
- f) Problematica general: descripcion de la problematica actual.
- g) Posicion del defecto: Cuello copa tronco ejes.
- h) **Dimension** de la estructura: Tamano en diametro de la estructura danada.
- i) Resolucion: trabajos de resolucion de problematica. j)

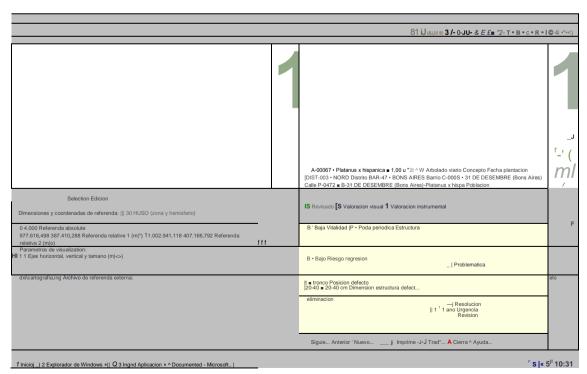
Urgencia: Inmediata - 1 ano - 2 anos - + de 3 anos.

k) Reinspeccion: necesidad de una nueva inspeccion, en anos.

Se realizara una inspeccion en campo de todas las poblaciones, anotando aquellas poblaciones o ejemplares con la necesidad de un estudio de riesgo.

Posteriormente se realizara el analisis VTA en todos los casos que presentaban algun tipo de patologia evaluable


Como ultimo paso para los ejemplares con un valor individual suficiente que tengan defectos importantes se realizara un analisis instrumental para valorar su estado exacto y poder definir unas medidas concretas


Todos los datos (tanto de poblaciones como de ejemplares unicos) referentes al riesgo se recogeran en la medida de lo posible en sistema GIS. Se crearan dos fichas tipo una para poblaciones y otra para individuos.

Ejemplo de ficha a desarrollar:

Ficha de Riesgo de Poblaciones.

Ficha de Riesgo de Individuos.

3.4. Analisis del riesgo por riesgo y urgencia de actuacion.

Los factores ha tener en cuenta en el analisis seran:

- Urgencia de las actuaciones correctoras
- Grado de riesgo

Las actuaciones de riesgo deberan centrarse sobre todo en las urgencias inmediatas (el plazo de ejecucion de las propuestas de ejecucion en 1 ano son referidas al ano en curso, etc.)

3.5. Analisis del riesgo por defecto y dimension de la estructura afectada.

Desde el punto de la vista del resultado de las actuaciones correctoras, se considerara muy importante la posicion del defecto. La posicion define el tipo de actuaciones que se requieren para la mejora de las condiciones, defectos en cuello implican en la mayona de casos la eliminacion del arbol (mas tarde o mas temprano), defectos en copa, pueden ser solucionados mayoritariamente con la poda y por tanto pueden desaparecer (al menos en parte), en el caso de los ejes, solo una parte es susceptible de mejora definitiva y la mayona requerira de posteriores actuaciones (a no ser que se substituyan por nuevos ejemplares).

3.6. Propuesta de planificacion de los trabajos:

Se realizara una propuesta de planificacion de los trabajos segun:

A realizar en los primeros 6 meses/1 ano.

- Urgencia inmediata/ Riesgo Alto.
- Urgencia inmediata/ Riesgo Medio.
- Urgencia inmediata/ Riesgo Bajo.

A realizar durante los primeros 1 - 2 anos.

- Urgencia medio plazo.